Quasisymmetric Schur functions
نویسندگان
چکیده
We introduce a new basis for the algebra of quasisymmetric functions that naturally partitions Schur functions, called quasisymmetric Schur functions. We describe their expansion in terms of fundamental quasisymmetric functions and determine when a quasisymmetric Schur function is equal to a fundamental quasisymmetric function. We conclude by describing a Pieri rule for quasisymmetric Schur functions that naturally generalizes the Pieri rule for Schur functions. Résumé. Nous étudions une nouvelle base des fonctions quasisymetrique, les fonctions de quasiSchur. Ces fonctions sont obtenues en spécialisant les fonctions de Macdonald dissymétrique. Nous décrivons les compositions que donnes un simple fonction quasisymetrique. Nous décrivons aussi une règle par certaines fonctions de Schur.
منابع مشابه
Skew row-strict quasisymmetric Schur functions
Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmetric Schur functions. This basis is generated combinatorially by fillings of composition diagrams that are analogous to the row-strict tableaux that generate Schur functions. We introduce a modification known as Young row-strict quasisymmetric Schur functions, which are generated by row-strict You...
متن کاملSkew Quasisymmetric Schur Functions and Noncommutative Schur Functions
Recently a new basis for the Hopf algebra of quasisymmetric functions QSym, called quasisymmetric Schur functions, has been introduced by Haglund, Luoto, Mason, van Willigenburg. In this paper we extend the definition of quasisymmetric Schur functions to introduce skew quasisymmetric Schur functions. These functions include both classical skew Schur functions and quasisymmetric Schur functions ...
متن کاملMultiplication Rules for Schur and Quasisymmetric Schur Functions
An important problem in algebraic combinatorics is finding expansions of products of symmetric functions as sums of symmetric functions. Schur functions form a well-known basis for the ring of symmetric functions. The Littlewood-Richardson rule was introduced to expand the product of two Schur functions as a positive sum of Schur functions. Remmel and Whitney introduced an algorithmic way to fi...
متن کاملMultiplicity Free Schur, Skew Schur, and Quasisymmetric Schur Functions
In this paper we classify all Schur functions and skew Schur functions that are multiplicity free when expanded in the basis of fundamental quasisymmetric functions, termed F -multiplicity free. Combinatorially, this is equivalent to classifying all skew shapes whose standard Young tableaux have distinct descent sets. We then generalize our setting, and classify all F -multiplicity free quasisy...
متن کاملRow-strict quasisymmetric Schur functions
Haglund, Luoto, Mason, and van Willigenburg introduced a basis for quasisymmetric functions called the quasisymmetric Schur function basis, generated combinatorially through fillings of composition diagrams in much the same way as Schur functions are generated through reverse column-strict tableaux. We introduce a new basis for quasisymmetric functions called the row-strict quasisymmetric Schur...
متن کاملQuasisymmetric (k, l)-hook Schur functions
We introduce a quasisymmetric generalization of Berele and Regev’s hook Schur functions and prove that these new quasisymmetric hook Schur functions decompose the hook Schur functions in a natural way. In this paper we examine the combinatorics of the quasisymmetric hook Schur functions, providing analogues of the RobinsonSchensted-Knuth algorithm and a generalized Cauchy Identity. Résumé. Nous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 118 شماره
صفحات -
تاریخ انتشار 2011